An inexact proximal algorithm for variational inequalities
نویسندگان
چکیده
This paper presents a new inexact proximal method for solving monotone variational inequality problems with a given separable structure. The resulting method combines the recent proximal distances theory introduced by Auslender and Teboulle (2006) with a decomposition method given by Chen and Teboulle that was proposed to solve convex optimization problems. This method extends and generalizes proximal methods using Bregman, Phi-divergences and Quadratic logarithmic distances. Taking mild assumptions we prove that the primal-dual sequences produced by algorithm is well-defined and converge to optimal solution of the variational inequality problem. Furthermore, we show some numerical experiments, for the particular case to solve convex optimization problem, showing that the algorithm is perfectly implementable.
منابع مشابه
An inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملAn Inexact Proximal Alternating Directions Method For Structured Variational Inequalities∗
In this paper we propose an appealing inexact proximal alternating directions method (abbreviated as In-PADM) for solving a class of monotone variational inequalities with certain special structure, and this structure under consideration is common in practice. We prove convergence of In-PADM method while the inexact term is arbitrary but satisfied some suitable conditions. For solving the varia...
متن کاملError bounds for proximal point subproblems and associated inexact proximal point algorithms
We study various error measures for approximate solution of proximal point regularizations of the variational inequality problem, and of the closely related problem of finding a zero of a maximal monotone operator. A new merit function is proposed for proximal point subproblems associated with the latter. This merit function is based on Burachik-Iusem-Svaiter’s concept of ε-enlargement of a max...
متن کاملAn Inexact Proximal Algorithm for Pseudomonotone and Quasimonotone Variational Inequalities
In this paper we introduce an inexact proximal point algorithm using proximal distances for solving variational inequality problems when the mapping is pseudomonotone or quasimonotone. Under some natural assumptions we prove that the sequence generates by the algorithm is convergent for the pseudomonotone case and weakly convergent for the quasimonotone ones. This approach unifies the results o...
متن کاملThe unified framework of some proximal-based decomposition methods for monotone variational inequalities with separable structure
Some existing decomposition methods for solving a class of variational inequalities (VI) with separable structures are closely related to the classical proximal point algorithm, as their decomposed sub-VIs are regularized by proximal terms. Differing in whether the generated sub-VIs are suitable for parallel computation, these proximal-based methods can be categorized into the parallel decompos...
متن کامل